CRHunter: integrating multifaceted information to predict catalytic residues in enzymes

نویسندگان

  • Jun Sun
  • Jia Wang
  • Dan Xiong
  • Jian Hu
  • Rong Liu
چکیده

A variety of algorithms have been developed for catalytic residue prediction based on either feature- or template-based methodology. However, no studies have systematically compared these two strategies and further considered whether their combination could improve the prediction performance. Herein, we developed an integrative algorithm named CRHunter by simultaneously using the complementarity between feature- and template-based methodologies and that between structural and sequence information. Several novel structural features were generated by the Delaunay triangulation and Laplacian transformation of enzyme structures. Combining these features with traditional descriptors, we invented two support vector machine feature predictors based on both structural and sequence information. Furthermore, we established two template predictors using structure and profile alignments. Evaluated on datasets with different levels of homology, our feature predictors achieve relatively stable performance, whereas our template predictors yield poor results when the homological relationships become weak. Nevertheless, the hybrid algorithm CRHunter consistently achieves optimal performance among all our predictors. We also illustrate that our methodology can be applied to the predicted structures of enzymes. Compared with state-of-the-art methods, CRHunter yields comparable or better performance on various datasets. Finally, the application of this algorithm to structural genomics targets sheds light on solved protein structures with unknown functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Prediction of Protein Catalytic Residues by Side Chain Orientation and Residue Contact Density

Prediction of protein catalytic residues provides useful information for the studies of protein functions. Most of the existing methods combine both structure and sequence information but heavily rely on sequence conservation from multiple sequence alignments. The contribution of structure information is usually less than that of sequence conservation in existing methods. We found a novel struc...

متن کامل

PINGU: PredIction of eNzyme catalytic residues usinG seqUence information

Identification of catalytic residues can help unveil interesting attributes of enzyme function for various therapeutic and industrial applications. Based on their biochemical roles, the number of catalytic residues and sequence lengths of enzymes vary. This article describes a prediction approach (PINGU) for such a scenario. It uses models trained using physicochemical properties and evolutiona...

متن کامل

Identification of specificity determining residues in enzymes using environment specific substitution tables

Environment speci c substitution tables have been used e ectively for distinguishing structural and functional constraints on proteins and thereby identify their active sites (Chelliah et al. (2004)). This work explores whether a similar approach can be used to identify speci city determining residues (SDRs) responsible for cofactor dependence, substrate speci city or subtle catalytic variation...

متن کامل

Control of catalytic efficiency by a coevolving network of catalytic and noncatalytic residues.

The active sites of enzymes consist of residues necessary for catalysis and structurally important noncatalytic residues that together maintain the architecture and function of the active site. Examples of evolutionary interactions between catalytic and noncatalytic residues have been difficult to define and experimentally validate due to a general intolerance of these residues to substitution....

متن کامل

Understanding nature's catalytic toolkit.

Enzymes catalyse numerous reactions in nature, often causing spectacular accelerations in the catalysis rate. One aspect of understanding how enzymes achieve these feats is to explore how they use the limited set of residue side chains that form their 'catalytic toolkit'. Combinations of different residues form 'catalytic units' that are found repeatedly in different unrelated enzymes. Most cat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016